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ABSTRACT1
Researchers are applying a large number of machine learning (ML) classifiers to predict travel2
behavior, but the results are data-specific and the selection of ML classifiers is author-specific. To3
obtain generalizable results, this paper provides an empirical benchmark by using 86 classifiers4
from 14 model families to predict the travel mode choice based on the National Household Travel5
Survey (NHTS) 2017 dataset. The 86 ML classifiers from 14 model families incorporate all the6
important ML classifiers discussed in previous studies. The large number of observations (about7
800,000) in the NHTS2017 dataset enables us to analyze the effect of different sample sizes as8
a meta-dimension on prediction accuracy. We found that ensemble models, including boosting,9
bagging, and random forests, perform the best among all the classifiers, and that deep neural10
networks (DNNs) perform the best among all the non-ensemble models. Classical discrete choice11
models (DCMs) only predict at the medium or relatively low range of prediction accuracy among12
all the models. Particularly, mixed logit model cannot be trained in a reasonable amount of time13
owing to its computational difficulty in sampling. Larger sample size generally leads to higher14
prediction accuracy, particularly for the models with high model complexity. Overall, this study15
provides an empirical benchmark result for the future, and future studies can build upon our results16
by testing more ML classifiers on the same NHTS2017 dataset, thus yielding more comparable,17
replicable, and generalizable knowledge shared by the whole research community.18
Keywords: Machine Learning, Travel Behavior19



Wang, Mo, and Zhao 3

1. INTRODUCTION1
In the transportation field, travel demand prediction functions as the foundation of transportation2
system optimization, economic analysis, and discussions about congestion mitigation policies.3
Travel demand includes the choice of trip purposes, trip modes, travel frequency, travel scheduling,4
destination and origin, travel route, long-term and short-term activity, locations, car ownership, and5
many other travel-related behaviors (1–6). Whereas demand forecasting is traditionally addressed6
by using discrete choice models (DCMs), including multinomial logit (MNL) model, nested logit7
(NL) model, and mixed logit (MXL) model (7), researchers can actually choose from a long list8
of machine learning (ML) classifiers for prediction because many travel behavioral decisions can9
be represented by discrete variables (8–10). In the previous studies that focus on the performance10
of ML classifiers on predicting travel demand, a typical procedure is to compare DCMs to one or11
several ML classifiers and to select the best one based on the comparison of prediction accuracy.12
However, the selection of the alternative ML classifiers is limited because it is often based on13
researchers’ expertise. Also the results are data-specific depending on the geographical locations14
where the datasets were collected and limited by the sample size the researcher has. These author-15
specific and data-specific limitations need to be overcome so that the research community can16
know the generally best classifier for travel demand prediction.17

This study seeks to find the best classifier with the highest possible prediction accuracy18
for travel mode choice prediction, by comparing 86 classifiers from 14 model families based on19
the National Household Travel Survey 2017 (NHTS 2017) dataset. The travel mode choice is the20
focus because it is the classical question in choice modeling. The 86 classifiers are chosen from21
14 of the most important classifier families, summarized from the review of the previous studies,22
including (1) discrete choice models (DCMs; 3 models), (2) deep neural networks (DNNs; 1623
models), (3) discriminant analysis (DA; 12 models), (4) Bayesian methods (BM; 6 models), (5)24
support vector machines (SVM; 7 models), (6) K nearest neighbors (KNN; 4 models), (7) decision25
trees (DT; 12 models), (8) generalized linear models (GLM; 10 models), (9) Gaussian process (GP;26
3 models), (10) rule-based models (RBM; 3 models); (11) bagging (BAGGING; 3 models), (12)27
random forests (RF; 2 models), (13) boosting (BOOSTING; 3 models), and (14) others (OTHERS;28
2 models). While it is impossible to exhaust all the available ML classifiers, our list of classifiers29
is designed to represent the most important ones and cover all the methods used in the past studies30
concerning travel behavior prediction. The NHTS dataset is used because the dataset covers the31
whole United States and the sample size is large enough to test the effects of different sample32
sizes by resampling from the full dataset. Readers can treat each single model as one "data point"33
in our study, and our analysis largely expands along two meta-dimensions: different classifiers34
and sample sizes, as opposed to previous studies that only examine one or several "data points".35
Overall, our study seeks to (1) find the globally best classifier for the prediction of travel mode36
choice; (2) rank the importance of each model family and classifier in a robust way; and (3) provide37
insights into particularly important model families, such as DNNs and DCMs.38

This paper serves as an empirical benchmark for any future study that seeks to predict travel39
behavior, particularly when the geographical location of the dataset is within the U.S. For example,40
future researchers could use the recommended classifier in a specific context for travel demand41
prediction without involving another large-scale comparison of ML classifiers. This study also42
provides intellectual insights into the characteristics of travel behaviors based on the performance43
of the classifiers. The ensemble classifiers, as shown to be the globally best, can capture the44
heterogeneity of travel behavior better than each individual classifier, revealing that the behavioral45
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heterogeneity exists not only at the individual level but also at the model level. Last but not least,1
we suggest future studies, particularly those focus on modeling methods, to use standard datasets2
(e.g. NHTS 2017 dataset) to test the performance of models, so that the knowledge gleaned from3
individual researchers can become replicable, generalizable, and comparable across the whole4
research community.5

The next section reviews the papers that compared classifiers for travel behavior predic-6
tion. Section 3 discusses our choice of classifiers and the NHTS dataset. Section 4 shows the7
performance of the ML classifiers and discusses specific model families such as DCMs. Section 58
concludes our findings.9

2. LITERATURE REVIEW10
Table 1 summarizes 15 past studies that focused on predicting travel mode choice. The 15 studies11
are by no means exhaustive of all the relevant studies, but suffice to provide valuable information12
for the setup of our experiments. For example, DCMs (including MNL and NL) are the dominant13
classifiers used in these studies for comparison: any study that involves comparison of several ML14
classifiers uses DCMs as the benchmark classifier. This is not a surprise given the historically15
important role DCMs play in the field of demand analysis (7, 11). Besides DCMs, DNNs are16
the second most frequently used: 9 out of the 15 studies used DNNs. Other than DCMs and17
DNNs, researchers also used SVM, DT, BOOSTING, BAGGING, RF, and other classifiers to18
model travel mode choice. In terms of results, DCMs perform worse than the alternative classifiers19
in all of these previous studies, except for one study that does not provide a conclusive result20
between DNN and NL (12). The models with higher performance are typically DNN (8 out of21
15) and ensemble models (4 out of 15). When neither DNN nor ensemble models are found to22
be dominant, the studies (3 out of 15) did not use them in the comparison at all. The sample23
size of these studies range from the magnitude of 103 to 105, which are the most common sample24
sizes from questionnaire surveys or observational datasets. These insights about model choice,25
performance comparison, and sample sizes aid in structuring our experiments.26

TABLE 1: ML classifiers in past studies; (abbreviations are the same as introduced in Section 1)

Author (Year) Task Sample Size Models Best Model

Nijkamp et al. (1996) (13) Travel Mode 1,396 DNN, MNL DNN
Rao et al. (1998) (14) Travel Mode 4,335 DNN, MNL DNN
Hensher and Ton (2000) (12) Travel Mode 801 DNN, NL DNN/NL
Xie et al. (2003) (15) Travel Mode 34,680 DT, DNN, MNL DNN
Cantarella et al. (2005) (2) Travel Mode 1,067 DNN, MNL DNN
Celikoglu (2006) (16) Travel Mode N.A. DNN, RBFNN, GRNN, MNL RBFNN
Pulugurta et al. (2013) (17) Travel Mode 5,822 RBM, MNL RBM
Tang et al. (2015) (18) Travel Mode 14,000 DT, MNL DT
Omrani (2015) (19) Travel Mode 9,500 DNN, RBFNN, MNL, SVM DNN
Sekhar and Madhu (2016)
(20)

Travel Mode 5,000 RF, DT, MNL RF

Hagenauer and Helbich
(2017) (8)

Travel Mode 230,608 MNL, DNN, NB, SVM, CTs,
BOOSTING, BAGGING, RF

RF

Tang et al. (2018) Travel Mode 14,000 DNN DNN
Wang and Ross (2018) (9) Travel Mode 51,910 BOOSTING, MNL BOOSTING
Cheng et al. (2019) (10) Travel Mode 7,276 RF, SVM, BOOSTING, MNL RF
Pirra and Dianna (2019) (21) Travel Mode 39,167 SVM SVM
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However, Table 1 also demonstrates the weaknesses of the past studies. First, the choice1
of alternative ML classifiers seems quite author-specific. In all of these studies, there is no clear2
reasoning why certain ML classifiers are included but not the others. Second, the comparisons3
are typically limited in its scope: Hagenauer and Helbich (2017) (8) is the study that has the4
largest number of ML classifiers, and it incorporates only 8 major ML classifiers. Third, somewhat5
surprisingly, whereas DCMs are the typical benchmark model in these comparison studies, the6
authors only focus on MNL model, except for one study that uses NL model as a comparison to7
DNN (12). The limited scope of DCMs is problematic because the state-of-practice DCMs are8
the NL and the MXL models, not MNL (7). Lastly, the conclusions from these previous studies9
are highly data-specific, particularly depending on the sample size. Different sample sizes could10
influence the model performance because complex models typically need a large sample size to11
achieve high prediction accuracy (22, 23).12

Many studies used ML models to predict other travel-related behaviors, such as traffic13
flow, accidents (24–26), car ownership (27, 28), and activity patterns (29). Studies germane to14
our approach that similarly used a large number of ML classifiers for comparison are Fernandez-15
Delgado et al. (2014) and Kotsiantis et al. (2007) (30, 31). Besides prediction accuracy, many other16
important topics are also related to the application of ML classifiers to travel demand analysis. For17
example, interpretability and robustness are both critical for the full application of ML methods in18
practice (32–36). These topics are beyond the scope of our study.19

3. METHODS AND DATA20
3.1. Selection of Classifiers21
In light of the selection of classifiers in the past studies (Table 1), we select our ML classifiers22
based on a balanced concern about completeness, relevance, and representativeness. The full list23
of our classifiers is summarized in Table 2. We seek to provide a complete list of ML classifiers24
so that our conclusion about the best classifier does not omit any important alternative model. As25
a result, the list of ML classifiers has incorporated all the classifiers used in the past studies as26
summarized in Table 1. However, it is literally impossible to exhaust all ML classifiers in one27
paper, so we make the list of classifiers representative of all ML classifiers by choosing the most28
important ones within each one of the 14 model families. For example, in the model family of29
DCMs, we incorporate three major categories: MNL, NL, and MXL with specific assumptions30
on the structure of nests and randomness in coefficients, because it is impossible to exhaust all31
the nest structures and all the combinations of coefficient randomness. Hence the three DCMs,32
including MNL, NL, and MXL, are representative of DCMs, although not a complete list. Also the33
selection of ML classifiers is inevitably limited by the practical feasibility of using each software34
package. The list of ML classifiers might appear slightly redundant in certain model families. For35
instance, nine models (from DNN_1_30_P to DNN_5_200_P) in the DNN family with varying36
depth and width are included and counted as nine different models; five naive Bayesian models37
(from naive_bayes_R to NaiveBayes_W) from the BM family with slightly different hyperparam-38
eters are also counted as five different models. The reason for the former is the dramatic impacts of39
architectural hyperparameters on DNN performance, and the reason for the latter is that different40
software packages have significantly different underlying algorithms, potentially leading to differ-41
ent model performance. In addition, the list of classifiers are highly relevant to travel behavioral42
analysis, because the order of this list is roughly sorted according to the importance of the ML43
classifiers based on the number of papers that used each classifier in the past. It is intuitive that44
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DCMs are the most relevant ones because the transportation field have a long tradition of using1
DCMs for behavioral analysis, and DNNs are the second most important ones due to its rising2
popularity in many subdomains in transportation (37).3

TABLE 2: List of 86 ML classifiers from 14 model families

Classifiers Model
Families

Description Language & Function

1. Discrete Choice Models (3 Models)
mnl_B DCM Multinomial logit model Python Biogeme
nl_B DCM Nested logit model (motor vs. nonmotor nests) Python Biogeme
mxl_B DCM Mixed logit model (ASC’s as random variables) Python Biogeme
2. Deep Neural Networks (16 Models)
mlp_R DNN Multi-layer perceptrons (MLP) R RSNNS mlp
mlpWeightDecay_R DNN MLP with weight decay R Caret mlpWeightDecay
avNNet_R DNN Neural network with random seeds with averaged

scores; (38)
R Caret avNNet

nnet_R DNN Single layer neural network with BFGS algorithm R Caret nnet
pcaNNet_R DNN PCA pretraining before applying neural networks R Caret pcaNNet
monmlp_R DNN MLP with monotone constraints (39) R Caret monmlp
mlp_W DNN MLP with sigmoid hidden neurons and unthresh-

olded linear output neurons
Weka MultilayerPerceptron

DNN_1_30_P DNN MLP with one hidden layer and 30 neurons in each
layer

Python Tensorflow

DNN_3_30_P DNN MLP with three hidden layers and 30 neurons in each
layer

Python Tensorflow

DNN_5_30_P DNN MLP with five hidden layer and 30 neurons in each
layer

Python Tensorflow

DNN_1_100_P DNN MLP with one hidden layer and 100 neurons in each
layer

Python Tensorflow

DNN_3_100_P DNN MLP with three hidden layers and 100 neurons in
each layer

Python Tensorflow

DNN_5_100_P DNN MLP with five hidden layers and 100 neurons in each
layer

Python Tensorflow

DNN_1_200_P DNN MLP with one hidden layer and 200 neurons in each
layer

Python Tensorflow

DNN_3_200_P DNN MLP with three hidden layers and 200 neurons in
each layer

Python Tensorflow

DNN_5_200_P DNN MLP with five hidden layers and 200 neurons in each
layer

Python Tensorflow

3. Discriminant Analysis (12 Models)
lda_R DA Linear discriminant analysis (LDA) model R MASS lda
lda2_R DA LDA tuning the number of components to retain up

to #classes - 1
R MASS Caret

lda_P DA LDA solved by singular value decomposition without
shrinkage

Python sklearn LinearDis-
criminantAnalysis

sda_R DA LDA with Correlation-Adjusted T (CAT) scores for
variable selection

R Caret

lda_shrink_P DA LDA solved by least squares with automatic shrink-
age based on Ledoit-Wolf lemma used.

Python sklearn LinearDis-
criminantAnalysis

slda_R DA LDA developed based on left-spherically distributed
linear scores

R Caret ipred
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stepLDA_R DA LDA model with forward/backward stepwise feature
selection

R Caret klaR

pda_R DA Penalized discriminant analysis (PDA) with shrink-
age penalty coefficients (40)

R mda gen.ridge

mda_R DA Mixture discriminant analysis (MDA) where the
number subclass is tuned to 3 (41)

R mda

rda_R DA Regularized discriminant analysis (RDA) with regu-
larized group covariance matrices (42)

R klaR

hdda_R DA High dimensional discriminant analysis (hdda) as-
suming each class in a Gaussian subspace (43)

R HD

qda_R DA Quadratic discriminant analysis (qda) Python sklearn Quadrat-
icDiscriminantAnalysis

4. Bayesian Models (6 Models)
naïve_bayes_R BM Naive Bayes (NB) classifier with the normal kernel

density (Laplace correction factor = 2 and Bandwidth
Adjustment = 1)

R naïvebayes

NaiveBayes_R BM NB classifier with the normal kernel density (Laplace
correction factor = 2 and Bandwidth Adjustment = 1)

R klaR NaiveBayes

BernoulliNB_P BM NB model with Bernoulli kernel density function Python sklearn BermoulliNB
GaussianNB_P BM NB model with Gaussian kernel density function

(smoothing = 5, according to the variance portions)
Python sklearn GaussianNB

BayesNet_W BM Bayes network models by hill climbing algorithm
(44)

Weka BayesNet

NaiveBayes_W BM NB model with Gaussian kernel density function Weka NaiveBayes
5. Support Vector Machines (7 Models)
svmRadial_R SVM Support Vector Machine (SVM) model with Gaus-

sian kernel (inverse kernel width = 1)
R Caret kernlab

svmRadialCost_R SVM SVM with Gaussian kernel (automatic spread of the
Gaussian kernel)

R Caret kernlab

svmPoly_R SVM SVM with polynomial kernel R Caret kernlab
lssvmRadial_R SVM Least Squares SVM model with Gaussian kernel R Caret kernlab
LinearSVC_l1_P SVM SVM with linear kernel and l1 penalty Python sklearn LinearSVC
LinearSVC_l2_P SVM SVM with linear kernel and l2 penalty Python sklearn LinearSVC
SVM_tf_P SVM SVM with l2 penalty using Adam optimizer Python Tensorflow
6. K Nearest Neighbors (4 Models)
KNN_1_P KNN k-nearest neighbors (KNN) classifier with number of

neighbors equal to 1
Python sklearn KNeigh-
borsClassifier

KNN_5_P KNN KNN classifier with number of neighbors equal to 5 Python sklearn KNeigh-
borsClassifier

lBk_1_W KNN KNN classifier with number of neighbors equal to 1
(brute force searching and Euclidean distance) (45)

Weka lBk

lBk_5_W KNN KNN classifier with number of neighbors equal to 5
(brute force searching and Euclidean distance) (45)

Weka lBk

7. Decision Tree (12 Models)
rpart_R DT Recursive partitioning and regression trees (RPART)

model (max depth = 30)
R rpart

rpart2_R DT RPART (max depth = 10) R Caret klaR
C5.0Tree_R DT C5.0 decision tree (confidence factor = 0.25) R Caret C50
ctree_R DT Conditional inference trees (46) R Caret C50
ctree2_R DT ctree (max depth = 10) R Caret C50
DecisionTree_P DT Decision tree classification model with Gini impurity

split measure
Python sklearn Decision-
TreeClassifier
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ExtraTree_P DT Tree classifier with best splits and features chosen
from random splits and randomly selected features
(47)

Python sklearn Extra-
TreeClassifier

DecisionStump_W DT Tree model with decision stump Weka DecisionStump
RandomTree_W DT Tree model that considers K randomly chosen fea-

tures at each node
Weka_RandomTree

HoeffdingTree_W DT An incremental tree with inductive algorithm. (48) Weka HoeffdingTree
REPTree_W DT Tree model using information gain/variance Weka REPTree
J48_W DT Pruned C4.5 decision tree model Weka J48
8. Generalized Linear Models (10 Models)
Logistic Regres-
sion_l1_P

GLM Logistic regression model with l1 penalty Python sklearn LogisticRe-
gression

Logistic Regres-
sion_l2_P

GLM Logistic regression model with l2 penalty Python sklearn LogisticRe-
gression

Logistic_W GLM Logistic regression model with a ridge estimator (49) Weka Logistic
SimpleLogistic_W GLM Linear logistic regression models fitted by using Log-

itBoost (50)
Weka SimpleLogistic

Ridge_P GLM Classifier using Ridge regression Python sklearn RidgeClassi-
fier

Passive Aggres-
sive_P

GLM Passive-aggressive algorithms for classification with
hinge loss (51)

Python sklearn PassiveAg-
gressiveClassifier

SGD_Hinge_P GLM Linear classifier with hinge loss and SGD training Python sklearn SGDClassi-
fier

SGD_Squared
Hinge_P

GLM Linear classifiers of SGD training with squared hinge
loss function

Python sklearn SGDClassi-
fier

SGD_Log_P GLM Linear classifiers of SGD training with log loss func-
tion

Python sklearn SGDClassi-
fier

SGD_Modified
Huber_P

GLM Linear classifiers of SGD training with modified hu-
ber loss function

Python sklearn SGDClassi-
fier

9. Gaussian Process (3 Models)
GP_Constant_P GP Gaussian Processes classification model with con-

stant kernel
Python sklearn GaussianPro-
cessClassifier

GP_DotProduct_P GP Gaussian Processes classification model with Dot-
Product kernel

Python sklearn GaussianPro-
cessClassifier

GP_Matern_P GP Gaussian Processes classification model with Matern
kernel

Python sklearn GaussianPro-
cessClassifier

10. Rule-Based Methods (3 Models)
DecisionTable_W RBM Simple decision table majority classier that uses

BestFirst as search method (52)
Weka DecisionTable

OneR_W RBM A classifier using one-rule on the input with the low-
est error (53)

Weka OneR

ZeroR_W RBM A classifier that predicts the mean class for all the test
patterns

Weka ZeroR

11. Bagging (3 Models)
Bagging_SVM_P BAGGING A bagging classifier that fits base classifiers based on

random subsets of the original dataset; SVM is the
base classifier

Python sklearn BaggingClas-
sifier

Bagging_Tree_P BAGGING A bagging classifier with DecisionTree as the base
classifier

Python sklearn BaggingClas-
sifier

Bagging_REP_W BAGGING A bagging classifier with REPTree as the base classi-
fier (54)

Weka Bagging

12. Random Forests (2 Models)
RandomForest_P RF A random forest model with 10 trees in the forest Python sklearn Random-

ForestClassifier
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ExtraTrees_P RF A meta estimator that fits 10 ExtraTree classifiers Python sklearn Extra-
TreeClassifier

13. Boosting (3 Models)
AdaBoost_P BOOSTING AdaBoost classifier. The DecisionTree with maxi-

mum depth =10 is set as the base estimator. (55)
Python sklearn AdaBoost-
Classifier

AdaBoostM1_W BOOSTING Boosting method with DecisionStump as the base
classifier

Weka AdaboostM1

Gradient Boost-
ing_P

BOOSTING An additive model trained in a forward stage-wise
fashion (56)

Python sklearn Gradient-
BoostingClassifier

14. Others (2 Models)
Voting_P OTHERS A classifier which combine machine learning clas-

sifiers and use a majority vote. We use lda_P, Lin-
earSVM and Logistic classifiers here.

Python sklearn VotingClassi-
fier

Attribute Se-
lected_W

OTHERS Use J48 trees to classify patterns reduced by attribute
selection (Hall, 1998)

Weka AttributeSelected

The classifiers in Table 2 come from four predominant coding languages: Python, R, Bio-1
geme, and Weka. Each one of the coding languages is abbreviated as _P, _R, _B, and _W, attached2
after the name of each classifier in the first column of Table 2. The third and fourth Columns of3
Table 2 describe each classifier and the specific functions in each coding language. Overall, our4
list of classifiers are relatively complete, highly representative of all ML classifiers, and highly5
relevant to the travel behavioral analysis.6

3.2. NHTS 2017 Dataset7
The NHTS2017 dataset is used for this empirical study because it has a wide geographical coverage8
and a large sample size. NHTS2017 broadly covers all the states and the major metropolitan9
areas in the United States. The full sample size is 781,831, larger than all the sample sizes used10
in previous studies. The NHTS2017 dataset is also publically available, so future studies can11
continue to work on this dataset to improve our results 1. One caveat with NHTS dataset is the12
lack of alternative-specific variables. This is because the origin-destination (OD) information is13
not granular enough to compute meaningful travel cost and time for each travel alternative. But the14
missing information should not have a large impact on the relative relationship between models,15
although it does have an impact on the maximum possible prediction accuracy achieved by our16
classifiers. Nonetheless, the wide geographical coverage, the large sample size, and the publicity17
of NHTS prompt us to use it for this empirical benchmark paper.18

3.3. Training19
To test the effects of sample size, we resample our training and testing sets with a ratio of 4 : 1 and20
the total number of observations equal to 1,000, 10,000, and 100,000. Five-fold cross-validation21
is used to compute the average prediction accuracy in the testing sets for each classifier. The22
dependent variable of this study is only the travel mode choice, although the dataset does incor-23
porate other important decision variables such as car ownership and activity patterns that are not24
used in our current study. The travel mode choice incorporates 6 travel modes, including walk-25
ing+bicycles, car, SUV, van+truck, public transit, and others. In total, 115 independent variables26
are used for prediction, including income, age, gender, and many other important socio-economic27
and travel-related variables. These input variables are selected from the full NHTS2017 dataset as28

1The data is available in https://nhts.ornl.gov/
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those most relevant to the output prediction. The inputs are further normalized before the model1
training. In total, we trained and examined 1,290 models.2

4. RESULTS3
4.1. Comparing Prediction Accuracy of Model Families4
Table 1 summarizes the 14 model families sorted from the highest to the lowest according to their5
median prediction accuracy. In Table 1, the green bars connect the minimum and maximum predic-6
tion accuracy of the models in each model family; each green dot represents the median prediction7
accuracy and each red represents the mean. The sorting is based on the median prediction accuracy8
because median values are more robust than mean to extremely large or small outliers. Overall,9
the prediction accuracy of all the model families range between 35% and 55%. Whereas these10
prediction accuracy values seem low compared to previous studies, the difficulty could be caused11
by the large number and the high imbalance of the travel mode alternatives.12

FIGURE 1: Prediction accuracy of 14 model families

Figure 1 shows that the best models are the ensemble models that integrate several models13
into one for prediction. The ensemble models include bagging, boosting, random forests, and the14
other ensemble methods, which are ranked as the first, the fourth, the sixth, and the third among all15
the 14 classifier families. Among these ensemble methods, bagging achieves the highest predic-16
tion accuracy among the 14 model families. Besides the median, the mean prediction accuracy of17
bagging methods is also relatively high, ranked as the second among the 14 model families. The18
highest prediction accuracy of the bagging methods reaches about 55.6%, much higher than the19
prediction accuracy of all the classifiers in the top 5 model families. This finding is quite reason-20
able. Researchers argued that ensemble models can be treated as one regularization method (57),21
and regularization is very important for the models with high complexity because it reduces the22
large variance in estimation (58). Researchers even demonstrated the relationship between model23
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ensemble and other regularization methods, such as dropout in DNN (59) and Bayesian prior as the1
mixing weights of ensemble models (60). Moreover, the dominant performance of ensemble mod-2
els is intuitive because the ensemble models literally use more models than individual ones. For3
example, the Voting method in the category of OTHERS, uses the majority vote of many individual4
classifiers, leading to more robust results than each separate one.5

DNN, DCM, and KNN are the other three noteworthy model families. First, DNN performs6
the best among all the non-ensemble models (ranked as the second). Note that we have not incor-7
porated a DNN ensemble model into our list of classifiers, so it is possible that DNN ensemble can8
perform better than all the individual DNN models and the ensemble models currently incorporated9
in the list. Second, DCM models perform in the medium range of the 14 model families. Given that10
DCM models have dominated the field of choice modeling for decades, our results show that DCM11
models are far from the best choice even for the classical travel mode choice analysis, at least for12
the sake of prediction. This finding is consistent with a large number of previous studies that found13
the worse performance of DCMs relative to other classifiers, as summarized in Table 1. Whereas14
most of the previous studies limit their scope of analysis to only MNL model, our results about15
DCMs have incorporated both nested logit (NL) and mixed logit (MXL) models. Therefore, our16
results provide stronger evidence that DCMs, even incorporating the nest structures or randomness17
in ASCs and coefficients, cannot perform better than ensemble models and DNNs. Lastly, one of18
the KNN models perform the best among all the models, but the KNN model family has the worst19
performance according to our ranking, and the variance of the KNN classifiers is also the largest.20
The large variance implies that the highest performance of one KNN classifier is data and model21
specific, thus not generalizable.22

4.2. Comparing Prediction Accuracy of Individual Models23
With a format similar to Figure 1, Figure 2 summarizes the prediction accuracy of each single ML24
classifier, ranked based on the median prediction accuracy from the highest to the lowest. Figure 225
highlights the DCM models by red.26

Again, we observe the high performance of the ensemble models in Figure 2. For example,27
GradientBoosting_P perform the best out of the 86 ML classifiers, and Bagging_REP_W is ranked28
as the fourth. These two classifiers have not only relatively high median prediction accuracy, but29
also low variance (short green bars), in comparison to other three top 5 models. Interestingly, the30
ML classifiers ranked as the second, the third, and the fifth, belong to the same model family GLM,31
although GLM is not ranked as high in Figure 1. Therefore, we treat the high performance of these32
GLM models as single instances rather than a consistent pattern. As to the DCM models, again all33
three models (MNL, NL, and MXL) perform in the medium range of all the 86 models. The MNL34
and NL models perform even slightly better than the MXL model. The problem with the MXL35
model is not exactly the prediction accuracy, but more related to the computational issue. Note36
that the MXL model has only one point concerning its prediction accuracy, evaluated as sample37
size equals to 1000. The MXL model cannot be trained in a reasonable amount of time (< 2438
hours) in Python Biogeme when the sample size reaches even 10,000. This is because the training39
of MXL relies on sampling, which takes much more time than the gradient-based methods used40
in many other classifiers, even including DNNs, which are notoriously known for the difficulty in41
training and convergence.42
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FIGURE 2: Prediction accuracy of 86 ML classifiers

4.3. Sample Size Effects1
Sample size is one important meta-dimension in our study. Figure 3 summarizes how prediction2
accuracy of all the models vary with different sample sizes. As shown in this figure, sample size has3
a clear impact on prediction accuracy: as sample size increases, the prediction accuracy of all the4
models increase dramatically. When the sample size is about 1000, the average prediction accuracy5
is only about 42.7%, and it increases to about 47.5% and 48.9% as the sample size becomes 100006
and 100000.7

The sample size effect exists particularly for the models with high complexity, such as DTs8
and DNNs, because they need large sample sizes to control their estimation errors, thus achieving9
high prediction accuracy. For example, the prediction accuracy of MNL models is about 43.1%10
when sample size equals to 1,000, and it becomes 46.1% when sample size equals to 100,000,11
showing 3% increase. As a comparison, the prediction accuracy of DNN_1_100_P model is12
about 43.7% when sample size equals to 1000, and it becomes 50.3% when sample size equals13
to 100,000, showing about 7% increase, which is much larger than MNL models. Theoretically,14
this difference is caused by the different model complexity of MNL and DNN (22, 23, 61, 62).15
The estimation error of simple models such as MNL is always well bounded even when sample16
size is relatively small, whereas the estimation error of complex models such as DNN is not well17
bounded, leading to the result that larger sample sizes enable DNNs to achieve higher prediction18
accuracy than small sample. This large sample size effect also exists in other models with high19
model complexity, such as BAGGING, BOOSTING, and RF.20

5. CONCLUSION AND DISCUSSIONS21
This study is motivated by the importance of using ML classifiers to predict travel demand and22
the limitation of data-specific and author-specific conclusions in the recent studies that compare23
choice models to a small number of ML classifiers. To achieve a generalizable result and provide24
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FIGURE 3: Prediction Accuracy with Sample Sizes

an empirical benchmark for future studies, we analyze the prediction accuracy of 86 models from1
14 model families on the travel mode choice based on the NHTS2017 dataset. The 86 models2
and the 14 model families include all the important ML classifiers used in the previous studies3
that focus on any type of travel behavioral prediction with ML classifiers. The 86 models are4
chosen based on the principles of completeness, relevance, and representativeness, and they also5
include the important models (e.g. MXL model) that are never examined in the previous studies6
that compared ML classifiers. Besides the number of ML classifiers, our experiment also expands7
to the meta-dimension of sample size, covering the range from a typical size in a questionnaire8
survey (103) to the maximum found in previous studies (105). With this setup, this study yields the9
following major findings.10

First, ensemble models including BAGGING, BOOSTING, and Random Forests perform11
the best in the 14 model families. This result is intuitive because ensemble models combines many12
individual classifiers, thus being more powerful than each individual one. Among non-ensemble13
methods, DNN has the highest prediction accuracy. Second, DCMs have only medium and rel-14
atively low level of prediction accuracy. This result holds for all three major DCMs, including15
MNL, NL, and MXL. To make things even worse, it is computationally impossible to train MXL16
model when sample size reaches 104 or 105 in a reasonable amount of time, at least given the cur-17
rent algorithm coded in Python Biogeme. These results about ensemble models, DNNs, and DCMs18
are actually consistent with the past studies, the majority of which found the superior prediction19
accuracy of ensemble models such as RF and DNNs over traditional DCMs. Lastly, we observe a20
clear effect of sample size on prediction accuracy. With larger sample sizes (from 103 to 105), ML21
classifiers can achieve significantly higher prediction accuracy. But this effect mainly holds for22
the models with high model complexity, such as DNN, BAGGING, and BOOSTING; this effect is23
much more limited for simple models, such as DCMs.24

Many limitations exist for this study. For instance, whereas this study has incorporated a25
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massive number of ML classifiers, the list of ML classifiers can never be truly complete. On the1
one hand, researchers constantly create more ML classifiers for various domain-specific questions,2
and these classifiers can always be augmented to our list. On the other hand, even conditioning3
on our current list of classifiers, the infinite possibilities of hyperparameters in even one model4
preclude a truly complete list of ML classifiers. Moreover, the current study considers sample size5
as the only meta-dimension, whereas several other meta-dimensions could render our results more6
generalizable. For example, prediction accuracy of ML classifiers heavily depends on the specific7
travel behaviors in prediction. It is intriguing to compare the results of predicting travel mode8
choice to others such as car ownership choices. Nonetheless, with the large scale of ML classifiers9
tested and the meta-dimensions incorporated, our study provides valuable benchmarks for future10
empirical studies.11

More importantly, we see our study as one first step for the field of travel demand analysis12
to start working on some publicly accepted benchmark dataset, rather than the datasets collected13
by each individual researcher. The shared public benchmark dataset enables researchers to con-14
sistently build their own work upon others and to avoid confusing results that could be caused by15
data-specific and author-specific issues. We think the NHTS2017 dataset as a public dataset with16
wide geographical coverage and a large sample size suffices to be the empirical benchmark dataset17
in this field. We encourage future studies to explore more interesting and novel ML classifiers18
and test them on the same dataset to beat our results, making the knowledge of each individual19
researcher more comparable, replicable, and generalizable.20
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